Взгляд изнутри: РЕДУКТОР ДЛЯ ПАРА

Что ожидает пользователь от запорного клапана? Предполагается единственно верный ответ: чтобы клапан надежно перекрывал поток и не допускал утечки как можно дольше. Также желательно, чтобы он сохранял это качество в течение многих лет. Конечно, у запорного клапана существует ещё ряд критериев, среди которых обобщенно,  не  привязываясь  к  типу  клапана и его конструктивному исполнению, можно выделить: утечки по штоку, возможность регулирования потока, стоимость клапана, удобство ремонта и обслуживания   и пр. Важнейшим моментом является доступность и уровень технической поддержки поставщика. Если все последние критерии полностью устраивают пользователя, но при этом клапан не держит поток, то вряд ли можно всерьёз оценивать прочие качества запорной арматуры. Они попросту ничего не стоят!

Технические и эксплуатационные свойства оборудования на протяжении всего жизненного цикла устройства не должны отходить на второй план после коммерческих условий. Пример запорного клапана очень простой, т. к. критерий, по сути, один. Другие типы трубопроводной арматуры могут иметь сразу не- сколько критериев, тем не менее связанных с выполнением единственной и главной функции.

В настоящей статье мы рассмотрим технически более сложное устройство – автономный редукционный клапан для пара, хорошо подходящий для детальной оценки факторов, влияющих на выполнение основной за- дачи, т. е. снижения давления пара. На рисунке 1 пред- ставлена иллюстрация функции снижения давления автоматическим редукционным клапаном для пара, который иногда называют просто «редуктор».

Puc. 2.      


 
В области небольших расходов и давлений широкое распространение получили редукционные клапаны прямого действия (рис. 2), которые работают следующим образом: импульс давления с паропровода за клабрану, которая соединена непосредственно со штоком, на окончании которого расположен главный клапан. Через этот клапан проходит пар от входа к выходу. Давление на входе Р1 передается на выход клапана. Чем выше давление на выходе Р2, тем выше усилие на мембрану, тем больше она деформируется (изгибается вверх) и, преодолевая противодействие пружины, перекрывает проходное сечение. Таким образом, давление на выходе клапана снижается. Обратный процесс проходит аналогично. При снижении давления на выходе клапана мембрана деформируется в обратную сторону (изгибается вниз), клапан приоткрывается, и давление на выходе возрастает. Таким образом, выходное давление воздействует непосредственно на главный клапан, управляя его положением. Настройка требуемого давления на выходе осуществляется изменением сжатия пружины при помощи настроечного винта. Во всех клапанах прямого действия выходное давление воздействует на мембрану, которая перемещает шток, открывая или закрывая главный клапан.

Такой принцип работы предполагает, что давление пара на выходе, воздействуя на мембрану, должно преодолевать усилие пружины. Ход штока в зависимости от размера клапана определяет ход пружины и может достигать нескольких сантиметров. Для сжимания механически массивной пружины необходимо прилагать постоянно увеличивающееся усилие. Это сказывается на поведении редукционного клапана прямого действия, а именно на том, что при росте расходов, т. е. при полном открытии клапана точность поддержания давления снижается в сторону падения давления настройки (рис. 3). Простая конструкция выполняет свою функцию, однако не в полной мере.

Развитие технологических процессов производства, использующих пар, диктует повышенные требования к компонентам пароконденсатных систем, в т. ч. к редукционным клапанам. Устаревшие механизмы уходят в прошлое, и им на смену приходят новые. Многие технологические процессы являются весьма требовательными в части качества параметров пара, и далеко не всегда клапаны прямого действия могут отвечать этим высоким требованиям по точности. Надежность также играет большую роль, потому что остановись редуктор в середине технологического процесса при аварии, потери могут исчисляться сотнями тысяч рублей в сутки.

Есть ли альтернатива редукционному клапану прямого действия? Есть, это редукционный клапан с пилотным управлением.  Конструктивно они могут иметь два варианта: мембранные (рис. 4) и поршневые (рис. 5).

Клапаны с пилотным управлением являются также автономными регуляторами давления пара, но работают иначе, нежели клапаны прямого действия. Импульс выходного давления непосредственно возисключается нелинейность в работе клапана на высо- ких расходах, что характерно для клапанов прямого действия, описанных выше. Точность пилотных клапа- нов неизменно выше во всем диапазоне расходов.


Подведем краткий итог:


 
Однако мембранная конструкция пилотного клапана не является идеальной. Множество встроенных внешних импульсных линий из медных трубок с резьбовыми фитингами делают клапан уязвимым к внешним механическим воздействиям и утечкам. Длинная протяженность медных трубок увеличивает риск засорения. Главная мембрана, имеющая довольно большой диаметр (от 20 см и выше, в зависимости от размера клапана), расположенная снизу, весьма чувствительна к термическим воздействиям. При попадании конденсата на разогретую паром мембрану нередко происходит разрыв из-за неравномерно- го температурного фронта. Поэтому разогрев клапана следует производить как можно медленнее, предусматривая меры по удалению конденсата. 

 Следующим этапом развития редукторов с пилотным клапаном стала разработка редукторов с поршневым механизмом. Один из примеров изображен на рис 5.


• являются прекрасной альтернативой мембранным клапанам, обеспечивая аналогичные высокие рабочие характеристики;

• имеют более длительный срок службы за счет меньшего количества уязвимых деталей конструкции и, как следствие, ниже затраты на содержание.


 

Таким образом, поршневые редукционные клапаны с пилотным управлением:


 
Поршневой клапан не имеет проблем, характерных для мембранных клапанов, за счет отсутствия мембраны как таковой и внешних импульсных линий. Перемещением главного клапана занимается поршень в виде втулки со сферическим днищем, обеспечивающим самоцентрирование поршня. Импульсные линии имеют короткую длину, являются внутренними и прямыми, они поддаются очистке. Встроенный в редуктор фильтр грубой очистки, циклонный сепаратор и конденсатоотводчик со свободноплавающим поплавком исключают эффекты эрозии и преждевременного износа главного клапана. Известно, что капли конденсата, летящие в потоке влажного пара с высокой скоростью, являются своего рода абразивом, вызывающим износ трубопроводов и клапанов. Встроенная система осушки и удаления конденсата гарантирует минимальную скорость износа. 

Совокупность перечисленных технических особенностей делает такой редуктор совершенным устройством. На рисунке 6 изображен пример поведения поршневого клапана COSPECT.

Важно понимать, что именно приобретает пользователь, получая поршневой клапан вместо стандартных типов клапанов. В обязательном порядке необходимо сравнивать эксплуатационные расходы на содержание клапанов.

Естественно, что чем меньше контроль, тем выше вероятность ошибки. Практика показывает, что до- вольно часто компоненты инженерных систем, в частности трубопроводная арматура, могут приобретаться, что называется, без привязки к объекту, т. е. без полной информации об объекте приложения. Например, появляется потребность в оборудовании и формулируется она следующим образом: «Редуктор для пара 10/6 кгс/см2, расход 2 000 кг/ч, DN 50, PN 16». Знакомая картина, не правда ли? Следует понимать, ка- кую именно цель преследует пользователь, приобретая такое непростое и ответственное оборудование, как редукционный клапан. Необходимо ли ему просто снизить давлением «как-нибудь» и ему не важно, что произойдет уже через полгода, или есть дополнительные условия и история эксплуатации данной системы, позволяющая сделать выводы о стоимости ремонтов, обслуживания, статистике отказов и пр.

Распространенной ошибкой является сравнение редукторов без учета стоимости эксплуатации.  Многие организации при закупках руководствуются только ценой, обозначая потребность «купить по минимальной цене». Но если задача звучит следующим образом:

«Максимально повысить энергоэффективность производства, обосновать предполагаемые мероприятия, учесть затраты на содержание», то глобальный эффект будет качественно иным.

Постоянно посещая различные производства, мы своими глазами наблюдаем, что культура строительства и эксплуатации  пароконденсатных  систем в России неуклонно повышается. Технологии разработки и производства трубопроводной арматуры для пара и конденсата (как важные компоненты инженерных систем) также претерпевают изменения и идут вперед. Так, двигаясь от простого к сложному, техно